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ABSTRACT

A homogeneity-adjusted dataset of total cloud cover fromweather stations in the contiguous United States

is compared with cloud cover in four state-of-the-art global reanalysis products: the Climate Forecast System

Reanalysis fromNCEP, theModern-EraRetrospective Analysis for Research andApplications fromNASA,

ERA-Interim from ECMWF, and the Japanese 55-year Reanalysis Project from the Japan Meteorological

Agency. The reanalysis products examined in this study generally showmuch lower cloud amount than visual

weather station data, and this underestimation appears to be generally consistent with their overestimation of

downward surface shortwave fluxes when compared with surface radiation data from the Surface Radiation

Network. Nevertheless, the reanalysis products largely succeed in simulating the main aspects of interannual

variability of cloudiness for large-scale means, as measured by correlations of 0.81–0.90 for U.S. mean time

series. Trends in the reanalysis datasets for the U.S. mean for 1979–2009, ranging from 20.38%

to 21.8%decade21, are in the same direction as the trend in surface data (20.50%decade21), but further

effort is needed to understand the discrepancies in their magnitudes.

1. Introduction

Clouds are a critical element in numerical climate and

forecast models since they strongly affect the radiation

balance and are also a major factor in determining cli-

mate sensitivity. Unfortunately, the recent evolution of

cloud amount on decadal and longer scales is unclear

because of uncertainties in both satellite (e.g., Norris

and Evan 2015; Sun et al. 2015) and ground-based ob-

servational records (e.g., Free and Sun 2013). Given

these uncertainties, it may be tempting to use reanalysis

outputs to assess trends in cloud cover. However, al-

though reanalyses are created to facilitate climate

monitoring and climate change assessment, they often

do not accurately represent long-term climate trends for

precipitation and temperature due primarily to changes

in observational inputs over time and to problems with

spatial distribution of observations (e.g., Lorenz and

Kunstmann 2012). Since cloud is not assimilated into

these reanalyses but instead is predicted by the models,

cloud cover from reanalyses is also subject to errors

related to physical parameterizations used in the model.

Because of these problems, it is important to assess the

reanalyses against long-term time series of observations.

Previous studies have compared climatological cloud

amount in operational models or reanalysis datasets to

satellite cloud data or ground-based remote sensing

cloud data. Some have found underestimates of cloud

amount in various large-scale regions including mid-

latitude oceans (Bedacht et al. 2007) and midlatitude

zonal means (Jakob 1999) in previous versions of the

ECMWF and NCEP reanalyses, although overestimates

may also occur, as, for example, in the Arctic during the
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cold season (Clark and Walsh 2010). In the United

States, several papers have found cloud cover at the

Atmospheric RadiationMeasurement (ARM) Southern

Great Plains (SGP) site to be underestimated by ERA-

Interim, NCEP–NCAR reanalyses (e.g.,Wu et al. 2012),

and MERRA (Kennedy et al. 2011). However, only a

few papers have compared the evolution of cloudiness

on interannual or decadal scales in models or reanalyses

to those in observations. Jakob (1999) found that the

previous ECMWF reanalysis (ERA-40) was able to

capture the interannual variability of cloud cover seen in

ISCCP satellite data although it underestimated extra-

tropical cloud cover and overestimated trade wind cu-

mulus. On the other hand, Bedacht et al. (2007) found

the time series of cloud cover from visual observations

over the ocean were not well correlated with those in the

NCEP–NCAR reanalyses.

Here we use a homogeneity-adjusted dataset of total

cloud cover from weather stations in the contiguous

United States to assess cloud cover in four current re-

analysis products from 1979 to 2009 with particular at-

tention to the interannual variability and trends in the

datasets. We also examine the relation of biases in cloud

cover to biases in surface solar radiation in the reanalysis

products.

2. Data used

a. Weather station visual observations

The total cloud cover dataset from U.S. weather sta-

tions, described in detail in Free and Sun (2014), consists

of data from 54 NWS stations and 101 military weather

stations in the contiguous United States that continued

to make visual observations of clouds after the in-

troduction of automated systems at many NWS stations

in the 1990s. Human observers record cloud fraction, in

eighths or tenths of sky cover, or sky condition (e.g.,

clear, scattered, overcast, etc.). To avoid problems with

nighttime visual cloud observations, we used reports

from 3-hourly daytime observations to construct the

monthly mean cloud cover dataset (Free and Sun 2014).

The dataset has been adjusted for temporal homoge-

neity as described in Free and Sun (2014) and was used

to evaluate satellite cloud datasets in Sun et al. (2015).

The weather station observer is looking at the sky

from a single point, which will likely give a different

result than that from a satellite or a reanalysis gridbox

value. For example, the single-point view of the whole

sky dome tends to give a larger cloud amount for areas

close to the horizon in the presence of broken clouds

because the observer sees the sides as well as the bot-

toms of clouds.Wu et al. (2012) estimated that this effect

could reduce the reanalysis cloud fraction by 2%–6%

from that seen by whole sky–viewing ground-based in-

struments (which have a similar point of view to that of a

human observer). This difference in field of view may

contribute to some extent to the climatological biases

shown in that paper and in the present work.

b. Reanalyses

1) CFSR

The Climate Forecast System Reanalysis (CFSR; Saha

et al. 2010)was producedbyNOAAusingNCEP’sClimate

Forecast System and covers 1979–2009 with a high-

resolution coupled atmosphere–ocean–land–sea ice sys-

tem. Inputs include time-varying CO2 and stratospheric

aerosols from volcanoes. We used ‘‘regular’’ monthly

means, which combine values from all four initialization

times for each day in the month. The values used are

forecasts of 6-h averaged total cloud cover, with horizontal

resolution of 1/28 latitude 3 1/28 longitude (downloaded

from http://rda.ucar.edu/datasets/ds093.2/#!access).

2) MERRA

The Modern-Era Retrospective Analysis for Re-

search and Applications (MERRA) was created by

NASA using the Goddard Earth Observing System

Model, version 5 (GEOS-5), and designed to focus es-

pecially on the hydrological cycle (Rienecker et al.

2011). It uses historical CO2 values and analyzed ozone

but climatological values for aerosols and other trace

gases. We used the time-averaged monthly means of

total cloud from four daily initialization times ob-

tained from ‘‘MATMNXRAD History’’ files, with a

horizontal resolution of 2/38 longitude 3 1/28 latitude
(found at ftp://goldsmr2.sci.gsfc.nasa.gov/data/s4pa/

MERRA_MONTHLY/).

3) ERA-INTERIM

The European Centre for Medium-Range Weather

Forecasts (ECMWF) interim reanalysis (ERA-Interim;

Dee et al. 2011) is designed as a bridge between ERA-40

(from September 1957 to August 2002) and the next-

generation reanalysis. Improvements in ERA-Interim

compared to ERA-40 include four-dimensional varia-

tional data assimilation, improvements in radiative

transfer modeling, changes in cloud parameterization,

and bias correction of satellite data. This reanalysis uses

climatological rather than time-evolving CO2 and

aerosols. We used monthly regular means (average of

four daily analyses at 0000, 0600, 1200, and 1800 UTC)

with horizontal resolution of 1/28 latitude 3 1/28 longi-
tude (provided at http://apps.ecmwf.int/datasets/data/

interim-full-moda/).
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4) JRA-55

The Japanese 55-year Reanalysis Project (JRA-55) is

the second version of the Japanese Reanalysis Project

produced by the Japan Meteorological Agency and

covers 55 years from 1958 to 2013. JRA-55 shows an

improvement over the previous product, the Japanese

25-year Reanalysis Project (JRA-25), with increased

spatial resolution, a new radiation scheme, and four-

dimensional variational data assimilation (Kobayashi

et al. 2015). It uses time-varying well-mixed greenhouse

gases. We use monthly mean total cloud cover data

from JRA-55 monthly mean model-resolution two-

dimensional instantaneous diagnostic fields, produced

from the output hours at 0000, 0600, 1200, and 1800UTC

(data are available at http://rda.ucar.edu/datasets/

ds628.1/#!access).

c. SURFRAD

We previously used surface radiation data from the

seven Surface Radiation Network (SURFRAD) sta-

tions (Augustine et al. 2005) in the United States to

evaluate cloud cover variations in satellite cloud prod-

ucts (Sun et al. 2015). In this study, this dataset is em-

ployed to investigate whether biases in cloud cover

cause biases in surface solar radiation in the reanalysis

products. The stations are located at Desert Rock, Ne-

vada; Bondville, Illinois; Table Mountain, Colorado;

Fort Peck, Montana; Goodwin Creek, Michigan; Penn-

sylvania State University, Pennsylvania; and Sioux Falls,

South Dakota. The available time periods for each site

vary between the stations, beginning no earlier than

1995. The SURFRAD data are monthly, accessed from

Global Monitoring Division, NOAA/Earth System

Research Laboratory (ftp://aftp.cmdl.noaa.gov/data/

radiation/surfrad/).

3. Methods

We extract regular monthly mean total cloud cover

data (averaged from all four initialization times) from

the reanalyses at grid boxes that contain the locations

corresponding to our weather stations. For comparison,

we also extracted data for 1800 UTC (which is closer to

the observation times for our surface cloud data) for the

three datasets (CFSR, ERA-Interim, and MERRA)

that had that data available. Results presented here are

for the regular rather than the 1800 UTC mean unless

stated otherwise.

We use the time period 1979–2009, the longest period

for which all cloud datasets listed in section 2 are

available. We compute mean biases of total cloud cover

between reanalysis and station data for each station and

the U.S. mean of those biases. The annual cycle is re-

moved to create anomalies using the reference period of

1979–2009. Pearson correlation coefficients are com-

puted between monthly mean anomaly time series.

Trends are calculated using least squares linear re-

gression, and confidence intervals for the trends are

derived using a correction for autocorrelation in the

time series. We create U.S. mean time series by com-

bining time series of anomalies in 2.58 grid boxes so as to

reduce spatial sampling errors. To test the significance of

the difference between trends from two products, we

examine the significance of the trend in the time series of

the difference between monthly means for the two

products. To evaluate the cloud cover bias with surface

solar radiation data, we selected the reanalysis grid box

closest to the U.S. SURFRAD stations.

4. Results

a. Climatological means and biases

All reanalyses have lower cloud cover amount than the

weather station observations for all regions and for the

U.S. mean (Fig. 1), suggesting that there may be a bias in

cloud-related physics shared by those climate models.

The U.S. mean difference is ;9% for MERRA and

CFSR,;15% for ERA-Interim, and ;19% for JRA-55.

Reanalysis biases of cloud cover at individual stations

vary from slightly positive to227%. ERA-Interim biases

are negative at all stations; the other three reanalyses

have negative biases at all but a handful of stations. Biases

for 1800 UTC diurnal means from reanalysis data are

generally within 3%of those for the entire 24-h cycle, and

are sometimes larger despite the observations beingmore

closely matched in time, especially for MERRA. CFSR,

ERA-Interim, and JRA-55 tend to give larger annual

cycles than those in the station data, while MERRA

gives a slightly smaller cycle in the U.S. mean and does

not reproduce the summer minimum in cloud cover

seen in the station data (not shown). Biases for theU.S.

FIG. 1. Annual-mean total cloud cover from four reanalyses and

weather station data averaged over 154 U.S. locations using grid-

ded station and reanalysis data.
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mean are largest in summer for all but MERRA, which

has much smaller biases in July and August than in the

rest of the year. Root-mean-square differences be-

tween monthly mean reanalysis cloud cover and that

from station data are smallest for CFSR (;12%) and

largest for JRA-55 (;20%), indicating that CFSR

does a better job in representing absolute total cloud

cover seen from the weather stations.

The underestimate of cloud cover in the United States

is similar to findings in a number of earlier studies for

other regions. We used reanalysis cloud cover for all

hours of the day, while our station dataset is limited to

daytime hours. However, since results for 1800 UTC are

generally similar to those for whole-day means, we

conclude that the mismatch of observation times is not a

significant source of differences between reanalyses and

station data or between different reanalysis products.

Another potential reason for biases may stem from the

difference between the top-down reanalysis viewpoint

and that of a weather observer, as described in section 3a.

However, based on estimates fromWu et al. (2012), this

difference does not appear to be enough to explain the

biases shown here.

b. Correlations between time series

Pearson correlation coefficients between monthly

anomaly time series from reanalyses and weather sta-

tions for individual stations (Fig. 2) range from 0.31 for

JRA-55 at San Clemente, California, to 0.88 for ERA-

Interim at Klamath Falls, Oregon. For all but MERRA,

there is a tendency for the best correlations to occur at

stations in the Northwest, in Texas, and in the Southeast

and the worst in California. For U.S. mean monthly re-

analysis time series, correlations with station data are

highest for ERA-Interim (0.90) and lowest for MERRA

(0.81) (Table 1), with CFSR (0.89) very close to ERA-

Interim. The high correlation between the reanalysis

products and surface data could be attributed to reliable

interannual signals from assimilated observations in-

cluding temperature and moisture that are used in cloud

FIG. 2. Correlations between reanalysis total cloud cover time series and weather station data for U.S. locations for

1979–2009.
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parameterization. Military and NWS station subsets do

not differ strongly in correlations with the reanalyses,

and correlations for the 1800 UTC diurnal mean from

reanalysis outputs are not generally better than those for

the full 24-h means.

All reanalysis products show the best correlations

with station data in the fall or winter and the worst

correlations in summer (Table 2). MERRA has much

lower correlations in summertime with both military

and NWS stations, and this appears to be the primary

reason for its lower overall correlation. The poorer

correlations in summer and in California, which are

also shown in satellite cloud products (see Sun et al.

2015), could be related to greater small-scale spatial or

temporal variability in cloud cover captured by the

weather stations, or to issues with the representation of

specific cloud types that are more common in summer

and in certain regions. Specifically, small cumulus

clouds tend to be more frequent in the summer, and

those clouds are more likely to be ‘‘seen’’ differently by

observers than by a model or satellite, whereas the

stratus clouds that are common in the winter are more

likely to produce similar estimates from both top-down

and ground observers.

Examination of low and high cloud cover or individual

cloud types might help indicate the reasons for differ-

ences between reanalyses and station data. However,

individual cloud types similar to those recorded by

weather observers are not generally available from

reanalyses, and the availability of low cloud and other

cloud type information from the U.S. weather stations is

much more limited since the 1990s than before then,

making such comparisons difficult.

c. Trends

Table 3 shows the trends in the U.S. mean time series

from the reanalyses and the station data. Like the satellite

products compared in Sun et al. (2015), reanalyses typi-

cally showmore negative trends than the station data; for

theU.S.mean and the period 1979–2009, this difference is

greatest for MERRA (;1.4%decade21), while the trend

in JRA-55 is within 0.12%decade21 of that in the station

data. The MERRA and ERA-Interim trends are signifi-

cantly different from those in the station data while the

JRA-55 and CFSR trends are not. In both station and

reanalysis data, trends seem to bemore negative inwinter

than in spring or summer (Table 3). For MERRA and

CFSR, the difference from trends in station data is

greatest for summer. Trends for JRA-55 are within

0.3%decade21 of those in station data for all seasons.

Trends for 1800 UTC reanalysis output for the U.S.

mean, where available, arewithin 0.5%decade21 of those

for all hours. For CFSR and ERA-Interim, 1800 UTC

output has a more negative trend than that for all hours,

while the reverse is true forMERRA.Despite these small

changes, the trend for MERRA in the 1800 UTC output

is still significantly different from the station trend, and

those for CFSR and ERA-Interim are not.

d. Relation to surface solar radiation

We expect that an underestimate of cloudiness will

lead to an overestimate of surface solar radiation. Such

overestimates have been found in many GCMs and

reanalyses (Wild 2008; Boilley and Wald 2015). To test

this, we examined the surface radiative fluxes from

the reanalyses and compared these to the data from

SURFRAD stations using scatterplots (Fig. 3). As ex-

pected, the surface solar radiation in the reanalyses is

generally overestimated. An exception occurs at Desert

Rock for ERA-Interim, which generates too little sur-

face solar radiation at that location although cloud cover

is underestimated rather than overestimated in that

area. [This can be seen as a roughly linear collection of

points in Fig. 3 (top left).] Overall, the overestimate of

surface solar radiation is less severe for ERA-Interim

TABLE 1. Pearson correlation coefficients between monthly U.S.

mean reanalysis total cloud cover and that from weather station

data, with least squares trends (%decade21) in U.S. mean total

cloud cover and their confidence intervals (twice the standard error

of the trend) for 1979–2009. The U.S. means are derived from

gridded data. All correlations are significant at the 0.05% level.

Dataset Correlation Trend

CFSR 0.89 0.72 6 0.74

ERA-Interim 0.90 1.09 6 0.73

JRA-55 0.85 0.38 6 0.51

MERRA 0.81 1.84 6 0.76

Stations 0.50 6 0.50

TABLE 2. Pearson correlation coefficients between U.S. mean time series of total cloud cover from reanalysis and weather station data by

season. All correlations except that for MERRA in June–August are significant at the 0.05% level.

December–February March–May June–August September–November

CFSR 0.92 0.80 0.63 0.97

ERA-Interim 0.94 0.92 0.61 0.96

JRA-55 0.94 0.80 0.66 0.93

MERRA 0.93 0.89 0.26 0.90
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than for the other reanalyses, although cloud cover is not

less biased in that product than in the other reanalyses.

We calculated correlations between time series of

cloud cover bias (reanalysis minus station values) and

those of surface shortwave radiation bias (reanalysis

minus SURFRAD values). The correlation coefficients

ranged from 20.82 to 0.16, with a mean of 20.34. Bias

correlations are lower for ERA-Interim (mean of 20.23

TABLE 3. Least squares linear trends for 1979–2009 by season, from gridded U.S. means. None of the seasonal trends is significant at the

0.05 level.

December–February March–May June–August September–November

CFSR 20.99 20.92 20.12 20.89

ERA-Interim 21.62 21.20 20.09 21.48

JRA-55 20.71 20.34 0.44 20.89

MERRA 21.69 21.31 21.75 22.59

Stations 20.83 20.61 0.51 20.91

FIG. 3. Scatterplots of monthly mean solar radiation from SURFRAD (x axes) and total cloud cover from

reanalyses (y axes) for 7 U.S. locations, with mean difference (site value minus reanalysis value) and standard

deviation of the differences (STD).
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for all sites) and for theDesert Rock site (mean20.03 for

all reanalyses). The relatively low bias correlations could

be due in part to the fact that the SURFRADstations and

the weather stations are not exactly collocated, as well as

to the existence of other factors influencing surface solar

radiation. The lower correlations for ERA-Interim than

for the other reanalyses suggest that other aspects of the

radiation calculations may be more important sources of

error than cloud cover biases for that reanalysis product.

Other studies have found underestimates of surface

shortwave radiation for clear-sky conditions in the

ECMWF general circulation model used for the IPCC

Fourth Assessment Report (Wild 2008). Similar prob-

lems could explain the large root-mean-square errors and

severe underestimates of surface shortwave radiation at

sites such as Desert Rock for ERA-Interim.

5. Conclusions

We compared long-term cloud cover trends and in-

terannual variations from current reanalysis products and

surface measurements, with the following main results:

1) Most reanalyses examined here do a reasonable job

of simulating the interannual variations in U.S. cloud

cover, but all underestimate the mean climatological

cloudiness from 9% to almost 20% for the U.S.

mean, and more for some individual stations.

2) The bias in total cloud cover is greatest for JRA-55

and smallest for MERRA and CFSR. This bias is

reflected in a high bias for surface shortwave radia-

tion at most SURFRAD locations. However, biases

in surface solar radiation and those in total cloud

cover are not well correlated at some locations,

especially for ERA-Interim.

3) Overall, ERA-Interim and CFSR have the best

correlations with station data, followed by JRA-55,

with MERRA showing the lowest correlation. The

U.S. mean total cloud time series from reanalyses

accounts for ;65%–81% of the variance in the U.S.

mean station data.

4) For the U.S. mean time series, trends in cloud cover

are all negative, ranging from 20.38%decade21 for

JRA-55 to21.8% decade21 for MERRA, compared

to 20.50%decade21 for the station data. The trends

in U.S. means from ERA-Interim and MERRA are

significantly different from those in the station data.
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